

The Augmented Role of the Medical Physicist in Radiation Emergencies

A/Prof Brad Cassels President AOARP, Past President ARPS

> AOCRP 6, Mumbai India 8 February 2023

What do I mean by augmented role?

 Emergency preparedness and response is not always at the forefront of the MP mind

• Day to day activities can create a sense of sameness

What do I mean by augmented role?

 The augmented role for emergency response requires a shift in mindset

 It requires a constant background awareness that at any time the MP can be called upon to provide crucial support during a radiation emergency

Defining the discussion

- There will be things that a medical physicist (MP) can influence and things they cannot.
- By deciding upon the boundaries of influence it is possible to address concepts of radiological emergency response into manageable pieces.
- This presentation focusses on <u>what the MP can do</u> within the hospital environment.

Emergency Response Fundamentals PPRR

- Prevention MP unable to influence
- Preparedness MP able to influence hospital
- Response MP able to influence hospital
- Recovery MP able to influence hospital

What can an MP encounter?

 Emergency Departments are designed to deal with anything that walks through the front door.

Radiological emergencies have happened and will happen.

Scale of Plans ?

 1.Transport accident involving radioactive material	4. Fire incident involving a premise containing or a vehicle transporting radioactive material
2. Loss and theft of radioactive material	5. Explosion of a dirty bomb
3. Finding of suspected radioactive material	 6. Incident response to nuclear threats (direct and consequence management)

Type of radiation emergency	Emergency preparedness category	Potential for health effects related to radiation			Potential for health effects related to emergency			Potential number of people involved	
		Tissue reactions	Stochastic effects	Contaminated persons	Conventional trauma	Psychological localised	Psychological widespread	Limited	Large
Improvised nuclear device	Cat IV	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Reactor (OPAL)	Cat II	Possible	Possible	Possible	Possible	Yes	Yes	Yes	Possible
Reactor (NPW)	Cat V, with conditions of Cat I or II	Possible	Possible	Possible	Possible	Yes	Yes	Yes	Possible
Criticality	Cat III or IV	Possible	No	Possible	Possible	Yes	Possible	Yes	No
Radioisotope thermoelectric generators	Cat IV	Possible	No	Possible	No	Yes	Possible	Yes	Possible
Lost or stolen radioactive material	Cat IV	Possible	No	Possible	No	Yes	Possible	Possible	Possible
Misuse of industrial radioactive material	Cat IV	Possible	Possible	Possible	No	Yes	Possible	Yes	Possible
Transport/laboratory	Cat IV	No	No	Possible	Possible	Yes	No	Yes	No
Malicious use of radioactive material	Cat IV	Possible	Possible	Possible	Possible	Yes	Yes	Yes	Yes

Type of radiation emergency	Emergency preparedness category	Potential for health effects related to radiation			Potential for health effects related to emergency			Potential number of people involved	
		Tissue reactions	Stochastic effects	Contaminated persons	Conventional trauma	Psychological localised	Psychological widespread	Limited	Large
Improvised nuclear device	Cat IV	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Reactor (OPAL)	Cat II	Possible	Possible	Possible	Possible	Yes	Yes	Yes	Possible
Reactor (NPW)	Cat V, with conditions of Cat I or II	Possible	Possible	Possible	Possible	Yes	Yes	Yes	Possible
Criticality	Cat III or IV	Possible	No	Possible	Possible	Yes	Possible	Yes	No
Radioisotope thermoelectric generators	Cat IV	Possible	No	Possible	No	Yes	Possible	Yes	Possible
Lost or stolen radioactive material	Cat IV	Possible	No	Possible	No	Yes	Possible	Possible	Possible
Misuse of industrial radioactive material	Cat IV	Possible	Possible	Possible	No	Yes	Possible	Yes	Possible
Transport/laboratory	Cat IV	No	No	Possible	Possible	Yes	No	Yes	No
Malicious use of radioactive material	Cat IV	Possible	Possible	Possible	Possible	Yes	Yes	Yes	Yes

Framework provided by national health authorities (1)

- At the national level, the response to a nuclear or radiological emergency is integrated in a national emergency response plan.
- This framework ensures that planning for medical responses to nuclear or radiological emergencies exists, and hospitals that manage the medical consequences have staff trained in the necessary skills.

Guide for Radiation Protection in

Emergency Exposure Situations

- The Framework

Framework provided by national health authorities (2)

Guide for Radiation Protection in Emergency Exposure Situations – Planning, Preparedness, Response and Transition

Radiation Protection Series G-3 Part 2

 These exercises need to be performed with appropriate regularity in order to train staff and provide an effective response if an emergency occurs.

Aussie example (AE):

 Commonwealth & State Plans require smooth integration where multi-level Governments are involved.

AE: National Plans and Arrangements

- National Strategic and Special Events (NSSE)
- Accident/Misuse of RN Material (COMDISPLAN)
- Radiological/Nuclear Terrorism (NCTP)
- Nuclear Powered Warships (OPSMAN1)
- Space Debris Re-entry (AUSCONPLAN SPRED)
- CBRN Response Plan (Health CBRN Plan)

AE: State Assistance & Coordination

Emergency Management Manual Victoria

AE: State Plans

 State Government Agency roles and responsibilities are defined via the Emergency Management Manuals

Emergency Management Manual Victoria

Victoria

State Chemical, Biological and Radiological (CBR) Response Arrangements

AE: Specific Responsibilities

- HAZRAD Events loss of control
- NPW Visits to Victoria (NPW PORT SAFETY PLAN)
- Planning for Potential Re-Entry of Radioactive
 Space Debris (AUSCONSPLANSPRED)

Radiation Emergency Response Roles

- Health Control agency for radiation
- Health State Health Emergency Response Plan to ensure an effective medical response
- Ambulance first aid & transport
- Fire victim extraction & decon

Radiation Emergency Response Roles

- Hospitals Treat contaminated and/or injured
- Police coordinate scene security
- Forensics evidence where criminal activity suspected
- Transport trains, trams, cars, people
- Coroner manage bodies/investigate

The MP in a radiological emergency

- MP understands radiation protection
- MP is experienced in dose assessment
- MP handles radioactive material

Know your chain of command

of command.

Roles of MP in a radiological emergency (1)

 Radiological assessor (RA): As a qualified expert in radiation dosimetry, the MP can fulfil the function of an RA

• This role bridges preparedness and response.

Roles of MP in a radiological emergency (2)

- Scientific and technical advisor: Because the MP usually acts as a radiation protection officer, he or she can give advice on matters related to a nuclear or radiological emergency.
- This role bridges preparedness and response.

Roles of MP in a radiological emergency (3)

• Trainer in radiation protection: MP typically provides regular training in the clinical environment. Those MPs who are specifically trained in nuclear or radiological emergencies can perform training inside and outside their hospital. During the emergency, the trainer will be able to provide quick briefings on radiation protections for the emergency teams.

Framework of collaboration

• Pre-Hospital Level – triage and decontamination

Hospital Level – provide information and training to all medical staff

 It is essential to integrate the MP into the preparedness stage in order to define their roles and actions in the planning at local, regional and national levels. Routine activities support the medical response: preparedness

- Dose assessment (for clinical purposes);
- Radiological surveys using radiation detection instrumentation in the hospital environment;
- Screening of contamination. Some MPs may have experience in the decontamination of patients (i.e. those related to NM departments);
- Training of other personnel in radiation protection;
- Role as Radiation Advisor at the hospital level

Training: preparedness

- Successful response depends on successful training before a response is needed.
- Understanding potential exposure pathways both for health protection and contamination control within the hospital is essential.

Thinking exposure: preparedness

External

- whole body, partial or localized
- Skin, hair, nails, clothes
- workers, response personnel, public

Preparation

• Survey and contamination meters

Thinking Contamination: preparedness

External:

• clothes, hands, feet, face, skin, hair

Internal:

• lungs, body orifices, mouth, nasal passages, wounds

Preparation:

• nasal and oral swabs, plastic bags, ID tags, recording sheets

Preparedness: radiation does not cause...

- Immediate death
- Immediate burns
- Immediate wounds
- Sudden incapacitation (rarely with extremely high dose)
- Irradiation or contamination alone are NOT medical emergencies

Thinking PPE

- Gown and waterproof apron
- Cap
- Waterproof shoe covers

- Two pairs of gloves, the inner pair taped to the gown, the outer pair to remove and replace as indicated
- Surgical mask
- Eye protection
- Personal radiation dosimeters

Note: lead aprons do not provide sufficient shielding from gamma radiation and are only indicated for usual clinical x-rays

Protecting staff: preparedness

Dose Rate	Time to receive 1 mSv	Time to receive 20 mSv
1 μSv/hour	41 days	2 years 3 months
10 μSv/hour	4 days 4 hours	83 days
100 μSv/hour	10 hours	8 days 8 hours
1 mSv/hour	1 hour	20 hours
10 mSv/hour	6 minutes	2 hours
50 mSv/hour	1 minute	24 minutes
100 mSv/hour	_	12 minutes

IMPORTANT!

Medical emergency care is the most important activity. Stabilizing a patient with life-threatening conditions should NOT be delayed because of the presence of contamination.

The only survivors of a radiation accident who have been so badly contaminated as to be a threat to those involved in treating them were...in...Chernobyl. No other accident victims, including those at Goiânia, Brazil, where gross contamination...occurred, have presented any threat to responders, due to the precautions...they followed...

Guidance Manual: Medical Management of Individuals Involved in Radiation Accidents, Technical report Series No. 131, Australian Radiation Protection and Nuclear Safety Agency, August 2000

Protecting staff: preparedness

	Guidance value*				
Tasks	H _p (10) **	E^{***}	$AD_{\rm T}$ +		
	<500 mSv	<500 mSv	$<\frac{1}{2}AD_{T,Table 2}$		
Life-saving actions	This value may the generic crit which the expe the emergency emergency wo understands an	v be exceeded — with eria in Table 2 — u ected benefits to oth worker's own h orker volunteers to d accepts these heal	h due consideration of nder circumstances in hers clearly outweigh ealth risks, and the take the action and th risks		
Actions to prevent severe deterministic effects and actions to prevent the development of catastrophic conditions that could significantly affect people and the environment	<500 mSv	<500 mSv	$<\frac{1}{2}AD_{T,Table 2}$		
Actions to avert a large collective dose	$< 100 \mathrm{mSv}$	<i>E</i> <100 mSv	$< \frac{1}{10} AD_{T,Table 2}$		

Source: IAEA EPR-MEDPHYS 2020. Guidance values for protection from deterministic events can also be found there.

Responsibilities of the MP (1)

- Assess patient dose due to internal and/or external irradiation and provide advice on the clinical care of patients.
- Promote the safety of patients and workers and a safety culture as the cornerstone of limiting radiation exposure and the spread of contamination in a nuclear or radiological emergency.
- Promote the use of universal standard precautions as the minimum level of protection when providing care for patients.

Responsibilities of the MP (2)

- Assess what personal protective measures are indicated given the available resources.
- Implement appropriate contamination control measures.
- Monitor radiation exposure of the staff.
- Keep staff informed and provide frequent updates to team members. Help in the preparation of messages directed at communicating with patients, their families and the general public to the required extent, in coordination with the team responsible for communication

Responsibilities of the MP (3)

- Know the signs of worker stress.
- Remind workers that proper use of PPE prevents them from being contaminated.
- Remind workers that time, distance and shielding can reduce exposure to radiation.
- Inform pregnant workers about the risks associated with response efforts, and exclude them from the team supporting the response if the staff dose is expected to exceed the limits for pregnant workers.

Responsibilities of the MP (4)

- Remind workers not to eat or drink while participating in the response.
- Remind workers to monitor electronic personal dosimeters (EPDs) and to request assistance when removing PPE.

Main MP task summary

Supporting medical response and radiation protection activities at the hospital level. Ensuring personal radiation protection of the health care team or other workers.

Implementing contamination control measures.

Providing input to the communication team for the preparation of messages for patients and the general public

The big picture

- Lots of players and decision points
- Hospital inputs shown

Hospital

- Know your flow
- Pre-decide
- CEO approved

Hospital

 Preparation for contamination control prior to patient arrivals

Equipment and supplies

- Rolls of plastic or paper to cover floors and unneeded equipment
- Tape for securing the floor covering and marking floors
- Caution tape and warning signs for marking controlled areas

- Large plastic bags for trash
- Plastic trash bags for contaminated clothing, tags and marking pens
- Small bags for contaminated personal items with tags or marking pens

E.g. Hospital Treatment Area

- Establish controlled area with temporary barriers, signs, security staff
- Cover floor of controlled areas and tape in place
- Large bins with plastic liners for waste
- Sufficient plastic bags for samples
- Remove or cover non-essential equipment from controlled area
- Establish control lines and monitor anyone or anything leaving the controlled area

Monitoring equipment and PPE

- Protective suits/gowns
- Disposable gloves
- Surgical caps
- Shoe covers
- Tape
- Face shields

- Electronic dosimeters
- Individual TLD or OSL
- Survey meter
- Contamination meter
- Patient contamination charts

E.g. Hospital Equipment

- Two area radiation monitors ambulatory and ambulance entrances to emergency department
- Two RADOS personal monitors
- Two CYPHER contamination monitors
- Two rolls of barricade tape
- Six radiation warning signs

CAUTION RADIATION AREA

RADIATION

HAZARD

AUTHORISED

PERSONNEL

ONLY

Sample Needed	Reason
FBE and differential STAT, followed with absolute lymphocyte counts every 6 hours for 48 hours (TBI)	Assess radiation dose; initial counts establish a baseline; subsequent counts reflect degree of injury
Routine urinalysis	Determine if kidneys are functioning normally and baseline of urinary constituents
Swabs from body orifices	Assess possibility of internal contamination
Wound dressing and/or swabs from wounds	Determine if wounds are contaminated
Urine: 24 hour specimen × 4 days Faeces × 4 days	Body excreta may contain radionuclides if internal contamination has occurred

Procedures needed

- How to don and doff PPE
- How and where to wear EPD and TLD/OSL
- How to prepare hospital areas to receive patients
- How to decon and where to decon patients
- How to survey for contamination
- How to swab, bag and tag biological samples
- How to do all these things and keep smiling !

Conclusions

- You can make a real difference during a radiological emergency
- Preparedness starts with you, but you are not alone
- Find your ED Radiation Emergency Plan

Resources

EPR-Pocket Guide for Medical Physicists 2020

> Pocket Guide for Medical Physicists Supporting Response to a Nuclear or Radiological Emergency

Questions?

Hospital Radiation Contamination MCI Flow Diagram With 2 area monitors and 2 Cypher monitors

